Security Analysis of the Native Code in Sun’s JDK

Jason Croft

Gang Tan

Department of Computer Science, Boston College

1 Introduction

Most real software systems are multilingual; that is, they
consist of components developed in different programming
languages. Multilingual software systems are convenient in
practice. Developers can reuse existing code modules, and
can also mix and match strengths of different languages.

However, multilingual software can have strong security
implications. For example, the Java Native Interface (JNI)
allows type-safe Java code to interact with unsafe C code.
When a type-safe language interacts with an unsafe lan-
guage in the same address space, in general, the overall ap-
plication becomes unsafe. In addition, it is difficult to write
safe and reliable multilingual software, as past research has
shown [6, 7, 4, 5]. It usually requires programmers to care-
fully take into account the discrepancies between languages
on issues such as language features, data layout, memory
management, safety/security assumptions, and many oth-
ers.

Figure 1 shows a contrived example of a multilingual
program developed through the JNI. The Java class “Vul-
nerable” contains a native method, which is realized by a
C function. The C function is susceptible to a buffer over-
flow as it performs an unbounded string copy to a 512-byte
buffer. Consequently, an adversary can craft malicious in-
puts to the public Java byteCopy() method, and overtake the
JVM. This example demonstrates that, although the JVM
provides various kinds of mechanisms to ensure safety and
security, the native C code in Java applications could render
the JVM unsafe.

Due to the fundamental insecurity of native C/C++ code,
the default policy of the JVM is to reject non-local native
code. Nonetheless, there is already a large amount of trusted
native code that comprises a significant portion of Sun’s
Java Development Kit (JDK). For instance, the classes un-
der java.util.zip are just wrappers that invoke the popular
Zlib C library. Of the 2.2 million lines of code in JDK 1.6,
there are nearly 700,000 lines of C/C++ code, accounting
for almost 25% of the JDK’s source code. Any vulnerabil-
ity in this trusted native code can compromise the security
of the JVM. Several vulnerabilities have already been dis-
covered in this code [4, 7].

2 Objectives

Since the native code inside the JDK is critical to Java se-
curity, examining and ensuring its security is of great practi-
cal value. Prior work [5, 8] has addressed some safety issues
inherent in the JNI, but none have scrutinized the JDK’s na-
tive code. In this research, we are performing a systematic
security analysis of this large and security-critical code. We
hope to achieve the following objectives:

e By collecting empirical evidence, we hope to expose
patterns of bugs. The patterns can guide the solutions
that we will propose to mediate them.

e The results of our security analysis will help to
strengthen the overall security infrastructure of Sun’s
JVM platform. We plan to report all discovered bugs
to Sun.

e We believe inspection of Java’s code will give insight
into a more extensive view of the security issues re-
lated to multilingual software environment, by uncov-
ering previously unknown issues. We will be inter-
ested in collecting evidence that shows the multilin-
gual environment increases the types and frequency of
bugs.

Given the large amount of trusted native code in the JDK,
bugs are likely to exist. Our objective is not to discover
all bugs or vulnerabilities in this code. Rather, we would
like to compile enough evidence to effectively conclude the
common types of bugs particular to such types of multilin-
gual software. After enough evidence has been collected,
we plan to begin developing tools and methods to discover
and mediate the types of problems we encounter.

3 Methodology

Discovering vulnerabilities in the source code is itself a
difficult and time consuming task. As no general methodol-
ogy exists to find all bugs in a program, part of the success
of our endeavor relies in our approach to this problem. One
option is to systematically examine the code using static



Java code

class Vulnerable {
/ * declare a native method ~*/
private native int bcopy (byte arr[]);
public void byteCopy (byte[] arr) {
/ * call the native method */
bcopy (arr) ;
}
static {
/ * load the shared library that implements
the native method «/
System.loadLibrary ("Vulnerable");
}
}

#include <jni.h>

#include "Vulnerable.h"

JNIEXPORT jint JNICALL

Java_Vulnerable_bcopy

(JNIEnv xenv, jobject xobj, jobject xarr)

/* env is an interface pointer through which a JNI AP
function can be called.
obj is the reference to the object on which the method is invoked.
arr is the reference to the array. =/

char buffer[512];

jbyte xcarr;

car = (xenv)->GetByteArrayElements
(env, arr, NULL);

strcpy (buffer, carr);

Figure 1. Vulnerable JNI Code. An array of bytes
is passed from Java code to C code. The buffer in the
C code can be overflowed from malicious inputs to
the Java function byteCopy().

analysis tools. These tools, however, are generally unsound
and incomplete, resulting in a large number of false posi-
tives and false negatives. Nonetheless, we have chosen to
employ this method, despite its drawbacks, as it is much
more efficient than manual auditing and can automate much
of the process. We used a combination of Splint [3], Cigi-
tal’s ITS4 [2], and Flawfinder [1].
We characterize the results from these tools as such:

e Those warnings that are not bugs (i.e., false positives).

e Those warnings that are real bugs in the native C/C++
code, but cannot be triggered by an attacker by send-
ing malicious inputs to Java functions. These bugs are
worth noting in our work, but pose no threat to the
JVM. For example, bugs located in those C functions
that are not used by Java belongs to this category.

e Those warnings that are real bugs and can also be trig-
gered by an attacker from Java’s side. These are the

most critical flaws, as they may be exploitable vulner-
abilities.

We also characterize vulnerabilities according to where
they occur. The C code in the JDK are broken into two cat-
egories: those native C libraries, such as the ZLib C library,
and the C “glue code” that serves as interfaces between Java
functions and the underlying C libraries. We expect that C
code in the second category has a higher vulnerability rate,
because it is easy to make mistakes in the interface code,
and because it is more likely that an attacker can trigger the
vulnerability from Java’s side.

We have already scanned several hundred source files
and thousands of lines of code thus far. Additionally, we
have organized our reportings based on our classifications
and have examples from each category.

4 Work in Progress

Our plan involves continued analysis of C/C++ code in
the JDK until adequate evidence has been collected. All the
bugs we identify will be reported to Sun. Based on the ev-
idence we collect, we will develop tools for finding/fixing
particular kinds of bugs in the JNI. We also plan to extend
our work beyond the JNI to include other types of multilin-
gual environments, such the Microsoft Common Language
Runtime (CLR).

References

[1] Flawfinder.
flawfinder/.

http://www.dwheeler.com/

[2] ITS4. http://www.cigital.com/its4/.
[3] Splint. http://www.splint.org/.

[4] Chris Evans. CESA-2006-004 - rev 2.
http://scary.beasts.org/security/
CESA-2006-004.html.

[5] Michael Furr and Jeffrey S. Foster. Polymorphic type
inference for the JNI. In European Symposium on Pro-
gramming (ESOP ’06), pages 309-324, 2006.

[6] Sheng Liang. Java Native Interface: Programmer’s
Guide and Reference, chapter 10. Addison-Wesley
Longman Publishing Co., Inc., 1999.

[7] Marc Schonefeld. Hunting Flaws in JDK. In Blackhat
Europe 2003, May 2003.

[8] Gang Tan, Andrew W. Appel, Srimat Chakradhar,
Anand Raghunathan, Srivaths Ravi, and Daniel Wang.
Safe Java Native Interface. In Proceedings of IEEE In-
ternational Symposium on Secure Software Engineer-
ing, pages 97-106, 2006.



